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Replace a numerical solver or an execution phase in 
the HPC application with a neural network (NN) model

Application

Phase 1

Phase 2

Phase 3

Neural network
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What is the neural network-based surrogate?

Goal: achieve performance improvement (i.e., reducing 
run time) without losing application-outcome quality



Replace a numerical solver or an execution phase in 
the HPC application with a neural network (NN) model

Application

Phase 1

Phase 2

Phase 3

Neural network

• NN and execution phase share the same input/output
• The HPC application must tolerate approximation
• This method is not universal
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Benefits of neural network-based surrogate

New opportunities for performance optimization
• Remove data dependency in the original code
• Remove irregular memory-access patterns

Adaptive to emerging AI accelerators

Nvidia GPUs 

FPGA

AMD GPUs 

…

ASIC AI chips
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Success of neural network-based surrogate

• Power-grid simulation: 
 Smart-PGSim (SC’20)
• 2.60× speedup over 10,000 

problems without losing solution 
optimality.

• Eulerian fluid simulation: 
 Smart-fluidnet (SC’19)
• 590× speedup while providing 

better simulation quality
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Success of neural network-based surrogate

• Power-grid simulation: 
 Smart-PGSim (SC’20)
• 2.60× speedup over 10,000 

problems without losing solution 
optimality.

• Eulerian fluid simulation: 
 Smart-fluidnet (SC’19)
• 590× speedup while providing 

better simulation quality

Quantum 
chemistry

Climate 
science

Hydrology

6



Challenges of building neural network (NN) -
based surrogate

Identifying and collecting 
input/output features

• Manual efforts
• Feature redundancy

NN model construction • Lack of coordination 
between feature reduction 
and NN model construction

Stages to build 
NN-based surrogate Current (problematic) practice

• Low usability
• Almost the whole 

workflow is manual

Repeatedly explore the 
usage of NN-based surrogate
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Auto-HPCnet

A framework to 
automatically develop NN 
surrogates to accelerate 

HPC applications

HPC Application NN model

Democratize the usage of NN-based surrogate
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Component 1- Compiler-based Feature Extraction

Component 2 – Autoencoders for Input Feature 
Reduction

Component 3- 2D Neural Architecture Search

Auto-HPCnet
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Component 1- Compiler-based feature extraction

An example of acquiring input and output variables

Step1: Trace generation 
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace

Step1

Identify the input/output features of NN surrogates automatically
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Component 1- Compiler-based feature extraction

An example of acquiring input and output variables

Step1: Trace generation 
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace
Step2: Identification of input and output variables
• Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and 

output (root of DDDG) features

Step1 Step2

Identify the input/output features of NN surrogates automatically
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Component 1- Compiler-based feature extraction

Step1: Trace generation 
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace
Step2: Identification of input and output variables
• Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and 

output (root of DDDG) features
Step3: Generating Training Samples 
• Introduce perturbation to input and collect the corresponding output results

Step1 Step2

Identify the input/output features of NN surrogates automatically
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An example of acquiring input and output variables



Component 2- Autoencoders to process input features

Handle input sparsity and reduce input-feature redundancy

Input features from HPC applications (sparse matrix)
                  

Limit support of sparse matrix formats (COO, CSR, or CRS) in current ML 
frameworks 

Unfolding introduces computation inefficiency and storage inefficiency
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Component 2- Autoencoders to process input features

• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒
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• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline (training autoencoder)
1) Take dense representation as input
2) Generate the Encoder matrix 
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Component 2- Autoencoders to process input features



• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline (training autoencoder)
1) Take dense representation as input
2) Generate the Encoder matrix 

Online
1) Directly take sparse representation
2) Generate the concise input matrix
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Component 2- Autoencoders to process input features



• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline
1) Take dense representation as input
2) Generate the Encoder matrix 

Online
1) Directly take sparse representation
2) Generate the concise input matrix

Reduce redundancy and translate sparse format simultaneously 
17

Component 2- Autoencoders to process input features



Component 3- 2D neural architecture search

AutoEncoder

AutoML

Tuning input features

NN topology tuning based on 
Bayesian optimization

(#Layer, #neurons, etc.)

We must consider the impact of input feature reduction 
during NN model construction
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1st dimension

2nd dimension



Component 3- 2D neural architecture search
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Outer Loop:
Feature Extraction      

Knobs (parameter) Tuning

Inner Loop:

Neural Network 
Architecture Search

Quality 
Requirement

Input 
Features

Input Features
X.shape = [1010, 1010]

Result Updates (The Best One)
M3 (95%，0.23s）

Accu = 90%, t = 0.13s X.shape = [1250,1250] Knobs: k’, k’’ Acc() t

X.shape = [1010, 1010] M1 (10, 4, …) 97% 0.27s

Acc() t

An appropriate NN model  

Input features

Input features

Model

An example of hierarchical Bayesian optimization

User

X.shape = [1010, 1010] M2 (5, 2, …) 85% 0.12s

X.shape = [1010, 1010] M3 (7, 4, …) 95% 0.23s

② (35%, 65%) X.shape = [284, 284] 70% 0.09s

③ (80%, 50%) X.shape = [500,500] 91% 0.11s
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95% 0.23s① (90%, 90%) X.shape = [1010, 1010]



Implementation
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Auto-HPCnet

HPC application
(Fortran|C|C++|Python) 

NN models
(Python)

A lightweight client library
A server library to conduct NN 

inferences on GPU



Implementation
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A lightweight client library
A server library to conduct NN 

inferences on GPU

Auto-HPCnet

Making Inference  Call in Auto-HPCnet

HPC application
(Fortran|C|C++|Python) 

NN models
(Python)

Implementation of Inference Call

Workflow 



• Platform
• NVIDIA DGX-1 cluster with 8 nodes, and each node is equipped with two Intel Xeon 

E5-2698 v4 CPUs and eight NVIDIA TESLA V100 (Volta) GPUs. 

Evaluation

• Applications
 Type-I: Numerical solvers
 Type-II: the PARSEC parallel benchmark suite
 Type-III: the Exascale Computing Project (ECP) Proxy Applications Suite 4.0.
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Evaluation

Speedup and prediction HitRate of Auto-HPCnet. 

Overall performance

Speedup Performance HitRate Performance 
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Ground truth: the original code; The ratio of successful cases with NN 
surrogates to the total number of cases;



Evaluation
Overall performance

❖ 1.89× - 16.8× speedup with a harmonic 
mean of 5.50×;

❖ Four applications → above 90%;
❖ 100% in other seven applications;
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Speedup and prediction HitRate of Auto-HPCnet. 

Speedup Performance HitRate Performance 



Evaluation

Performance comparison with existing approximation methods 

Comparison with the state-of-the art approximation methods 

• ACCEPT : the state-of-the art framework for NN-bases approximation
• Loop perforation: every a couple of iterations skip one iteration
• Autokeras: an AutoML framework

❖ Auto-HPCnet outperforms ACCEPT and Loop perforation by more than 40% and 5x on 
average

❖ Autokeras causes slowdown in applications whose inputs are high-dimensional sparse 
matrices (CG, FFT, MG, miniQMC, and AMG)

27

ACCEPT.                     



Evaluation
Overhead Analysis
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❖ Offline phases 

Auto-HPCnet Time overhead

Component 1: LLVM trace generation, etc 24-59 minutes

Component 2: AutoEncoder training 1.4-2.2 hours 

Component 3: 2D Neural Architecture search 6-13 hours

(1) Fetching input data to GPU memory 21.2%

(2) Encoding input data to low-dimensional features 10.1%

(3) Loading a pre-trained surrogate model 1.6%

(4) Running the surrogate model and retrieving the 
model output for the application

67.1% 

❖ Online phases 

Once the NN model is developed and well-trained, it can be integrated into the 
HPC applications for repeated use.



Conclusions

• The NN-based surrogate is powerful to accelerate HPC 
applications, but is difficult to use

• Auto-HPCnet automates the process of feature identification, 
performance and application quality control, and NN model 
construction

Democratize the usage 
of NN-based surrogate
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Accelerating Scientific Discovery 
through HPC + AI

Questions?

30


	Slide 1: Auto-HPCnet: an Automatic Framework  to Build Neural Network-based Surrogate  for HPC Applications
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

