

Auto-HPCnet: an Automatic Framework to Build Neural Network-based Surrogate for HPC Applications

Wenqian Dong*^, Gokcen Kestor# and Dong Li*

*University of California, Merced

^Florida International University

#Pacific Northwest National Laboratory

Published in HPDC'23

What is the neural network-based surrogate?

Replace a numerical solver or an execution phase in the HPC application with a neural network (NN) model

Goal: achieve performance improvement (i.e., reducing run time) without losing application-outcome quality

Replace a numerical solver or an execution phase in the HPC application with a neural network (NN) model

- NN and execution phase share the same input/output
- The HPC application must tolerate approximation
- This method is not universal

Benefits of neural network-based surrogate

New opportunities for performance optimization

- Remove data dependency in the original code
- Remove irregular memory-access patterns

Adaptive to emerging AI accelerators

Success of neural network-based surrogate

- Eulerian fluid simulation: Smart-fluidnet (SC'19)
- 590× speedup while providing better simulation quality

- Power-grid simulation: Smart-PGSim (SC'20)
- 2.60× speedup over 10,000 problems without losing solution optimality.

Success of neural network-based surrogate

- Eulerian fluid simulation: Smart-fluidnet (SC'19)
- 590× speedup while providing better simulation quality

- **Power-grid simulation**: Smart-PGSim (SC'20)
- 2.60× speedup over 10,000 problems without losing solution optimality.

Challenges of building neural network (NN) – based surrogate

Democratize the usage of NN-based surrogate

Component 3- 2D Neural Architecture Search

Component 1- Compiler-based feature extraction

Identify the input/output features of NN surrogates automatically

Step1: Trace generation

Use LLVM-Tracer to generate a dynamic LLVM instruction trace

An example of acquiring input and output variables 10

Component 1- Compiler-based feature extraction

Identify the input/output features of NN surrogates automatically

Step1: Trace generation

• Use LLVM-Tracer to generate a dynamic LLVM instruction trace

Step2: Identification of input and output variables

 Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and output (root of DDDG) features

Component 1- Compiler-based feature extraction

Identify the input/output features of NN surrogates automatically

Step1: Trace generation

• Use LLVM-Tracer to generate a dynamic LLVM instruction trace

Step2: Identification of input and output variables

 Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and output (root of DDDG) features

Step3: Generating Training Samples

Introduce perturbation to input and collect the corresponding output results

Handle input sparsity and reduce input-feature redundancy

Input features from HPC applications (sparse matrix)

Limit support of sparse matrix formats (COO, CSR, or CRS) in current ML frameworks

X Unfolding introduces computation inefficiency and storage inefficiency

- Autoencoder: reduce redundancy in input features
- **Embedding API**: matrix multiplication $A_{sparse} * B_{sparse} = C_{dense}$

- Autoencoder: reduce redundancy in input features
- **Embedding API**: matrix multiplication $A_{sparse} * B_{sparse} = C_{dense}$

Offline (training autoencoder)1) Take dense representation as input2) Generate the Encoder matrix

- Autoencoder: reduce redundancy in input features
- **Embedding API**: matrix multiplication $A_{sparse} * B_{sparse} = C_{dense}$

Input Matrix (COO)

- Autoencoder: reduce redundancy in input features
- **Embedding API**: matrix multiplication $A_{sparse} * B_{sparse} = C_{dense}$

Reduce redundancy and translate sparse format simultaneously

Component 3- 2D neural architecture search

We must consider the impact of input feature reduction during NN model construction

Component 3– 2D neural architecture search

An example of hierarchical Bayesian optimization

Implementation

Implementation

Platform

• NVIDIA DGX-1 cluster with 8 nodes, and each node is equipped with two Intel Xeon E5-2698 v4 CPUs and eight NVIDIA TESLA V100 (Volta) GPUs.

• Applications

Type-I: Numerical solvers **Type-II:** the PARSEC parallel benchmark suite **Type-III:** the Exascale Computing Project (ECP) Proxy Applications Suite 4.0.

Туре	Application: replaced function	Description	Quality of Interest (QoI)
Ι	CG:CG_solver	Conjugate Gradient	Solution of linear equations
	FFT : <i>FFT_solver</i>	Fast Fourier Transform	Output sequence of FFT
	MG:MG_solver	Multi-Grid method	The final residual of the solver
II	Blackscholes: BlkSchlsEqEuroNoDiv	Investment pricing	The computed price
	Canneal:Annealing	VLSI routing	Routing cost
	fluidanimation:NS_equation	Fluid dynamics	Particle distance
	streamcluster:Dimension_reduction	Online clustering	Cluster center distance
	X264:Encoding	Video encoding	Structure similarity
	miniQMC:Determinant	Quantum Monte Carlo	Particle energy
III	AMG:PCG_solver	Solver of linear systems	Solution of linear systems
	Laghos: SolveVelocity	Compressible gas dynamics	Velocity Divergence

Overall performance

Speedup and prediction HitRate of Auto-HPCnet.

Speedup Performance

Ground truth: the original code;

 $Speedup = \frac{T_{Numerical_solver}}{T'_{NN_infer} + T'_{Data_load} + T_{Other_part}}$

HitRate Performance

The ratio of successful cases with NN surrogates to the total number of cases;

HitRate =
$$\frac{1}{N} \sum_{i=1}^{N} (1, \text{ if } |V'_i - V_i| \le \mu |V_i|)$$

Overall performance

Speedup and prediction HitRate of Auto-HPCnet.

Speedup Performance

1.89× - 16.8× speedup with a harmonic mean of 5.50×;

HitRate Performance

★ Four applications → above 90%;
★ 100% in other seven applications:

100% in other seven applications;

Comparison with the state-of-the art approximation methods

Performance comparison with existing approximation methods

- **ACCEPT** : the state-of-the art framework for NN-bases approximation
- Loop perforation: every a couple of iterations skip one iteration
- Autokeras: an AutoML framework
 - Auto-HPCnet outperforms ACCEPT and Loop perforation by more than 40% and 5x on average
 - Autokeras causes slowdown in applications whose inputs are high-dimensional sparse matrices (CG, FFT, MG, miniQMC, and AMG)

Overhead Analysis

Offline phases

Auto-HPCnet	Time overhead
Component 1: LLVM trace generation, etc	24-59 minutes
Component 2: AutoEncoder training	1.4-2.2 hours
Component 3: 2D Neural Architecture search	6-13 hours

Once the NN model is developed and well-trained, it can be integrated into the HPC applications for repeated use.

Online phases

(1) Fetching input data to GPU memory	21.2%
(2) Encoding input data to low-dimensional features	10.1%
(3) Loading a pre-trained surrogate model	1.6%
(4) Running the surrogate model and retrieving the model output for the application	67.1%

Conclusions

- The NN-based surrogate is powerful to accelerate HPC applications, but is difficult to use
- Auto-HPCnet automates the process of feature identification, performance and application quality control, and NN model construction

Accelerating Scientific Discovery through HPC + Al

Questions?

