
Auto-HPCnet: an Automatic Framework
to Build Neural Network-based Surrogate

for HPC Applications

Wenqian Dong*^, Gokcen Kestor# and Dong Li*

*University of California, Merced

^Florida International University

#Pacific Northwest National Laboratory

ESwML 2024

Published in HPDC’23

Replace a numerical solver or an execution phase in
the HPC application with a neural network (NN) model

Application

Phase 1

Phase 2

Phase 3

Neural network

2

What is the neural network-based surrogate?

Goal: achieve performance improvement (i.e., reducing
run time) without losing application-outcome quality

Replace a numerical solver or an execution phase in
the HPC application with a neural network (NN) model

Application

Phase 1

Phase 2

Phase 3

Neural network

• NN and execution phase share the same input/output
• The HPC application must tolerate approximation
• This method is not universal

3

Benefits of neural network-based surrogate

New opportunities for performance optimization
• Remove data dependency in the original code
• Remove irregular memory-access patterns

Adaptive to emerging AI accelerators

Nvidia GPUs

FPGA

AMD GPUs

…

ASIC AI chips

4

Success of neural network-based surrogate

• Power-grid simulation:
 Smart-PGSim (SC’20)
• 2.60× speedup over 10,000

problems without losing solution
optimality.

• Eulerian fluid simulation:
 Smart-fluidnet (SC’19)
• 590× speedup while providing

better simulation quality

5

Success of neural network-based surrogate

• Power-grid simulation:
 Smart-PGSim (SC’20)
• 2.60× speedup over 10,000

problems without losing solution
optimality.

• Eulerian fluid simulation:
 Smart-fluidnet (SC’19)
• 590× speedup while providing

better simulation quality

Quantum
chemistry

Climate
science

Hydrology

6

Challenges of building neural network (NN) -
based surrogate

Identifying and collecting
input/output features

• Manual efforts
• Feature redundancy

NN model construction • Lack of coordination
between feature reduction
and NN model construction

Stages to build
NN-based surrogate Current (problematic) practice

• Low usability
• Almost the whole

workflow is manual

Repeatedly explore the
usage of NN-based surrogate

7

Auto-HPCnet

A framework to
automatically develop NN
surrogates to accelerate

HPC applications

HPC Application NN model

Democratize the usage of NN-based surrogate

8

Component 1- Compiler-based Feature Extraction

Component 2 – Autoencoders for Input Feature
Reduction

Component 3- 2D Neural Architecture Search

Auto-HPCnet

9

Component 1- Compiler-based feature extraction

An example of acquiring input and output variables

Step1: Trace generation
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace

Step1

Identify the input/output features of NN surrogates automatically

10

Component 1- Compiler-based feature extraction

An example of acquiring input and output variables

Step1: Trace generation
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace
Step2: Identification of input and output variables
• Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and

output (root of DDDG) features

Step1 Step2

Identify the input/output features of NN surrogates automatically

11

Component 1- Compiler-based feature extraction

Step1: Trace generation
• Use LLVM-Tracer to generate a dynamic LLVM instruction trace
Step2: Identification of input and output variables
• Generate dynamic data dependency graph (DDDG) to identify input (leaf of DDDG) and

output (root of DDDG) features
Step3: Generating Training Samples
• Introduce perturbation to input and collect the corresponding output results

Step1 Step2

Identify the input/output features of NN surrogates automatically

12
An example of acquiring input and output variables

Component 2- Autoencoders to process input features

Handle input sparsity and reduce input-feature redundancy

Input features from HPC applications (sparse matrix)

Limit support of sparse matrix formats (COO, CSR, or CRS) in current ML
frameworks

Unfolding introduces computation inefficiency and storage inefficiency

13

Component 2- Autoencoders to process input features

• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

14

• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline (training autoencoder)
1) Take dense representation as input
2) Generate the Encoder matrix

15

Component 2- Autoencoders to process input features

• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline (training autoencoder)
1) Take dense representation as input
2) Generate the Encoder matrix

Online
1) Directly take sparse representation
2) Generate the concise input matrix

16

Component 2- Autoencoders to process input features

• Autoencoder: reduce redundancy in input features
• Embedding API: matrix multiplication 𝐴𝑠𝑝𝑎𝑟𝑠𝑒 ∗ 𝐵𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐶𝑑𝑒𝑛𝑠𝑒

Offline
1) Take dense representation as input
2) Generate the Encoder matrix

Online
1) Directly take sparse representation
2) Generate the concise input matrix

Reduce redundancy and translate sparse format simultaneously
17

Component 2- Autoencoders to process input features

Component 3- 2D neural architecture search

AutoEncoder

AutoML

Tuning input features

NN topology tuning based on
Bayesian optimization

(#Layer, #neurons, etc.)

We must consider the impact of input feature reduction
during NN model construction

18

1st dimension

2nd dimension

Component 3- 2D neural architecture search

19

Outer Loop:
Feature Extraction

Knobs (parameter) Tuning

Inner Loop:

Neural Network
Architecture Search

Quality
Requirement

Input
Features

Input Features
X.shape = [1010, 1010]

Result Updates (The Best One)
M3 (95%，0.23s）

Accu = 90%, t = 0.13s X.shape = [1250,1250] Knobs: k’, k’’ Acc() t

X.shape = [1010, 1010] M1 (10, 4, …) 97% 0.27s

Acc() t

An appropriate NN model

Input features

Input features

Model

An example of hierarchical Bayesian optimization

User

X.shape = [1010, 1010] M2 (5, 2, …) 85% 0.12s

X.shape = [1010, 1010] M3 (7, 4, …) 95% 0.23s

② (35%, 65%) X.shape = [284, 284] 70% 0.09s

③ (80%, 50%) X.shape = [500,500] 91% 0.11s

1
st

 d
im

en
si

o
n

2
n

d
 d

im
en

si
o

n

95% 0.23s① (90%, 90%) X.shape = [1010, 1010]

Implementation

22

Auto-HPCnet

HPC application
(Fortran|C|C++|Python)

NN models
(Python)

A lightweight client library
A server library to conduct NN

inferences on GPU

Implementation

23

A lightweight client library
A server library to conduct NN

inferences on GPU

Auto-HPCnet

Making Inference Call in Auto-HPCnet

HPC application
(Fortran|C|C++|Python)

NN models
(Python)

Implementation of Inference Call

Workflow

• Platform
• NVIDIA DGX-1 cluster with 8 nodes, and each node is equipped with two Intel Xeon

E5-2698 v4 CPUs and eight NVIDIA TESLA V100 (Volta) GPUs.

Evaluation

• Applications
 Type-I: Numerical solvers
 Type-II: the PARSEC parallel benchmark suite
 Type-III: the Exascale Computing Project (ECP) Proxy Applications Suite 4.0.

24

Evaluation

Speedup and prediction HitRate of Auto-HPCnet.

Overall performance

Speedup Performance HitRate Performance

25

Ground truth: the original code; The ratio of successful cases with NN
surrogates to the total number of cases;

Evaluation
Overall performance

❖ 1.89× - 16.8× speedup with a harmonic
mean of 5.50×;

❖ Four applications → above 90%;
❖ 100% in other seven applications;

26

Speedup and prediction HitRate of Auto-HPCnet.

Speedup Performance HitRate Performance

Evaluation

Performance comparison with existing approximation methods

Comparison with the state-of-the art approximation methods

• ACCEPT : the state-of-the art framework for NN-bases approximation
• Loop perforation: every a couple of iterations skip one iteration
• Autokeras: an AutoML framework

❖ Auto-HPCnet outperforms ACCEPT and Loop perforation by more than 40% and 5x on
average

❖ Autokeras causes slowdown in applications whose inputs are high-dimensional sparse
matrices (CG, FFT, MG, miniQMC, and AMG)

27

ACCEPT.

Evaluation
Overhead Analysis

28

❖ Offline phases

Auto-HPCnet Time overhead

Component 1: LLVM trace generation, etc 24-59 minutes

Component 2: AutoEncoder training 1.4-2.2 hours

Component 3: 2D Neural Architecture search 6-13 hours

(1) Fetching input data to GPU memory 21.2%

(2) Encoding input data to low-dimensional features 10.1%

(3) Loading a pre-trained surrogate model 1.6%

(4) Running the surrogate model and retrieving the
model output for the application

67.1%

❖ Online phases

Once the NN model is developed and well-trained, it can be integrated into the
HPC applications for repeated use.

Conclusions

• The NN-based surrogate is powerful to accelerate HPC
applications, but is difficult to use

• Auto-HPCnet automates the process of feature identification,
performance and application quality control, and NN model
construction

Democratize the usage
of NN-based surrogate

29

Accelerating Scientific Discovery
through HPC + AI

Questions?

30

	Slide 1: Auto-HPCnet: an Automatic Framework to Build Neural Network-based Surrogate for HPC Applications
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

